首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:An empirical case against the use of genetic-based learning classifier systems as forecasting devices
  • 本地全文:下载
  • 作者:Jaqueson K. Galimberti ; Sergio da Silva
  • 期刊名称:Economics Bulletin
  • 电子版ISSN:1545-2921
  • 出版年度:2012
  • 卷号:32
  • 期号:1
  • 页码:354-369
  • 出版社:Economics Bulletin
  • 摘要:We adapt a genetic-based learning classifier system to a forecast evaluation exercise by making its key parameters endogenous and taking into account the need of convergence of the learning algorithm, an issue usually neglected in the literature. Doing so, we find it hard for the algorithm to beat simpler ones based on recursive regressions and on the random walk in forecasting stock returns. We then argue that our results cast doubts on the plausibility of using learning classifier systems to represent agents process of expectations formation, an approach commonly found into the agent-based computational finance literature.
  • 关键词:genetic-based learning classifier systems; genetic algorithms; stock returns forecasting
国家哲学社会科学文献中心版权所有