首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Research on Short-Term Wind Farm Output Power Prediction Model Based on Meteorological Data Collected by WSN
  • 本地全文:下载
  • 作者:Li Ma ; Bo Li ; Du Jie
  • 期刊名称:International Journal of Hybrid Information Technology
  • 印刷版ISSN:1738-9968
  • 出版年度:2013
  • 卷号:6
  • 期号:5
  • 出版社:SERSC
  • 摘要:The prediction of wind farm output power is considered as an effective way to increase the wind power capacity and improve the safety and economy of power system. It is one of the hot research topics on wind power. The wind farm output power is related to many factors such as wind speed, temperature, etc., which is difficult to be described by some mathematical expression. In this paper, Back Propagation (BP) neural network algorithm and genetic algorithm (GA) are combined to establish the prediction model of the short-term wind farm output power based on meteorological data collected by Wireless Sensor Network (WSN). The Meteorological data is used to determine the input variables of the BP neural network. Meanwhile, the GA is used to adjust the value of BP's connection weight and threshold dynamically. Then the trained BP neural network is used to predict the wind power. The experiment results show that our method has better prediction capability compared with that using BP neural network alone or using wind power formulas
  • 关键词:Wind Farm; Power Prediction; Artificial Neural Network; GA; WSN
国家哲学社会科学文献中心版权所有