首页    期刊浏览 2024年09月18日 星期三
登录注册

文章基本信息

  • 标题:An Quadrant-XYZ routing algorithm for 3-D Asymmetric Torus Network-on-Chip
  • 本地全文:下载
  • 作者:Mohammad Ayoub Khan ; Abdul Quaiyum Ansari Ansari
  • 期刊名称:International Journal of ACM Jordan
  • 印刷版ISSN:2078-7952
  • 电子版ISSN:2078-7960
  • 出版年度:2011
  • 卷号:II
  • 期号:I
  • 出版社:ACM Jordan ISWSA Professional Chapter
  • 摘要:

    Abstract: Three Dimensional (3-D) ICs are able to obtain significant performance benefits over 2-D ICs based on the electrical and mechanical properties resulting from the new geometrical arrangement (topology). The arrangement of 3-D also offers opportunities for new circuit architecture based on the geometric capacity that provide greater numbers of interconnections among multi-layer active circuits. The emerging 3-D VLSI Integration and process technologies allow the new design opportunities in 3-D NoC. The 3-D NoC can reduce significant amount of wire length for local and global interconnects. In this paper, we have proposed an efficient 3-D Asymmetric Torus routing algorithm for NoC router. The 3-D torus has constant node degree, recursive structure, simple communication algorithms, and good scalability. A Quadrant-XYZ dimension order routing algorithm is proposed to build up the 3-D Asymmetric Torus NoC router. The algorithm partitions the geometrical space into quadrants and selects the nearest wrap-around edge to connect the destination node. Thus, the presented algorithm guarantees minimal paths to each destination based on routing regulations. The complexity of the algorithm is O (n). The proposed routing algorithm has been compared with the traditional XYZ algorithm and the comparison results show that the quadrant-XYZ router has shorter path length. This paper presents a Register Transfer Logic (RTL) simulation model of Quadrant-XYZ dimension order routing algorithm for 3-D asymmetric torus NoC written in Verilog. The model represents the functional behavior of the routing chip down to the flit (byte) level. The 3-D asymmetric torus NoC has achieved a maximum operating frequency 750 MHz on Xilinx Vertex-6 programmable device..

国家哲学社会科学文献中心版权所有