首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:A Comparative study on Term Weighting Methods for Automated Telugu Text Categorization with Effective Classifiers
  • 本地全文:下载
  • 作者:Vishnu Murthy.G ; B. Vishnu Vardhan ; K. Sarangam
  • 期刊名称:International Journal of Data Mining & Knowledge Management Process
  • 印刷版ISSN:2231-007X
  • 电子版ISSN:2230-9608
  • 出版年度:2013
  • 卷号:3
  • 期号:6
  • DOI:10.5121/ijdkp.2013.3606
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:Automatic Text categorization refers to the process of assigning a category or some categories automatically among predefined ones. Text categorization is challenging in Indian languages has rich in morphology, a large number of word forms and large feature spaces. This paper investigates the performance of different classification approaches using different term weighting approaches in order to decide the most applicable one to Telugu text classification problem. We have investigated on different term weighting methods for Telugu corpus in combination with Naive Bayes ( NB), Support Vector Machine (SVM) and k Nearest Neighbor (kNN) classifiers
  • 关键词:Term Weighting Methods; Text Categorization; Support Vector Machine; Naive Bayes; k Nearest Neighbor; ;CHI-square
国家哲学社会科学文献中心版权所有