摘要:Finite element methods are used in various areas ranging from mechanical engineering to computer graphics and bio-medical applications. In engineering, a critical point is the gap between CAD and CAE. This gap results from different representations used for geometric design and physical simulation. We present two different approaches for using subdivision solids as the only representation for modeling, simulation and visualization. This has the advantage that no data must be converted between the CAD and CAE phases. The first approach is based on an adaptive and feature-preserving tetrahedral subdivision scheme. The second approach is based on Catmull-Clark subdivision solids.
关键词:Subdivision solids; Finite element method; Isogeometric analysis