首页    期刊浏览 2025年04月19日 星期六
登录注册

文章基本信息

  • 标题:Nonparametric Neutral Network Estimation of Lyapunov Exponents and a Direct Test for Chaos
  • 本地全文:下载
  • 作者:Oliver Linton ; Mototsugu Shintani
  • 期刊名称:Econometrics Publications
  • 印刷版ISSN:0969-4366
  • 出版年度:2002
  • 出版社:Suntory Toyota International Centre for Economics and Related Disciplines
  • 摘要:This paper derives the asymptotic distribution of nonparametric neural network estimator of the Lyapunov exponent in a noisy system proposed by Nychka et al (1992) and others. Positivity of the Lyapunov exponent is an operational definition of chaos. We introduce a statistical framework for testing the chaotic hypothesis based on the estimated Lyapunov exponents and a consistent variance estimator. A simulation study to evaluate small sample performance is reported. We also apply our procedures to daily stock return datasets. In most cases we strongly reject the hypothesis of chaos; one mild exception is in some higher power transformed absolute returns, where we still find evidence against the hypothesis but it is somewhat weaker
  • 关键词:Artificial neural networks; nonlinear dynamics; nonlinear time series; non- ;parametric regression; Sieve estimation
国家哲学社会科学文献中心版权所有