首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:On the Hardness of the Noncommutative Determinant
  • 本地全文:下载
  • 作者:Vikraman Arvind ; Srikanth Srinivasan
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2009
  • 卷号:2009
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    In this paper we study the computational complexity of computing the noncommutative determinant. We first consider the arithmetic circuit complexity of computing the noncommutative determinant polynomial. Then, more generally, we also examine the complexity of computing the determinant (as a function) over noncommutative domains. Our hardness results are summarized below:

    1. We show that if the noncommutative determinant polynomial has small noncommutative arithmetic circuits then so does the noncommutative permanent. Consequently, the commutative permanent polynomial has small commutative arithmetic circuits.

    2. For any field F we show that computing the nn permanent over F is polynomial-time reducible to computing the 2n2n (noncommutative) determinant whose entries are O(n2)O(n2) matrices over the field F.

    3. We also derive as a consequence that computing the nn permanent over nonnegative rationals is polynomial-time reducible to computing the noncommutative determinant over Clifford algebras of nO(1) dimension.

    Our techniques are elementary and use primarily the notion of the Hadamard Product of noncommutative polynomials

  • 关键词:determinant; Noncommutative arithmetic circuits; permanent; Permanent estimators
国家哲学社会科学文献中心版权所有