首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A note on the real -conjecture and the distribution of roots
  • 本地全文:下载
  • 作者:Pavel Hrubes
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2012
  • 卷号:2012
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    Koiran's real -conjecture asserts that if a non-zero real polynomial can be written as f=pi=1qj=1fij , where each fij contains at most k monomials, then the number of distinct real roots of f is polynomial in pqk. We show that the conjecture implies quite a strong property of the complex roots of f: their arguments are uniformly distributed except for an error which is polynomial in pqk. That is, if the conjecture is true, f has degree n and f(0)=0 , then for every 00 and , counted with multiplicities. In particular, if the real -conjecture is true, it is also true when multiplicities of non-zero real roots are included.

国家哲学社会科学文献中心版权所有