首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Average Case Lower Bounds for Monotone Switching Networks
  • 本地全文:下载
  • 作者:Yuval Filmus ; Toniann Pitassi ; Robert Robere
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2013
  • 卷号:2013
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    An approximate computation of a Boolean function by a circuit or switching network is a computation which computes the function correctly on the majority of the inputs (rather than on all inputs). Besides being interesting in their own right, lower bounds for approximate computation have proved useful in many subareas of complexity theory, such as cryptography and derandomization. Lower bounds for approximate computation are also known as correlation bounds or average case hardness. In this paper, we obtain the first average case monotone depth lower bounds for a function in monotone P. We tolerate errors that are asymptotically the best possible for monotone circuits. Specifically, we prove average case exponential lower bounds on the size of monotone switching networks for the GEN function. As a corollary, we establish that for every i, there are functions computed with no error in monotone NCi+1, but that cannot be computed without large error by monotone circuits in NCi. Our proof extends and simplifies the Fourier analytic technique due to Potechin, and further developed by Chan and Potechin. As a corollary of our main lower bound, we prove that the communication complexity approach for monotone depth lower bounds does not naturally generalize to the average case setting.

国家哲学社会科学文献中心版权所有