首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Non-autoreducible Sets for NEXP
  • 本地全文:下载
  • 作者:Dung Nguyen ; Alan Selman
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2013
  • 卷号:2013
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    We investigate autoreducibility properties of complete sets for \cNEXP under different polynomial reductions.Specifically, we show under some polynomial reductions that there is are complete sets for \cNEXP that are not autoreducible. We obtain the following results:- There is a \reductionptt-complete set for \cNEXP that is not \reductionpbtt-autoreducible.- For any positive integers s and k such that k">2s−1k, there is a \reductionps−T-complete set for \cNEXP that is not \reductionpk−tt-autoreducible.- There is a Turing complete set for \cNEXP that is not \reductionptt-autoreducible.- For any positive integer k, there is a \reductionpk−tt-complete set for \cNEXP that is not weakly \reductionpk−tt-autoreducible.- There is a \reductionp3−tt-complete set for \cNEXP that is not \reductionp3−tt-autoreducible, given that the autoreduction cannot be allowed to ask a query too short or too long. - Relative to some oracle, there is a \reductionp2−T-complete set for \cNEXP that is not \reductionpT-autoreducible. - Relative to some oracle, there is a \reductionpm-complete set for \cNEXP that is not \reductionpNOR−tt-autoreducible.

    We will show that settling the question whether every \reductionpdtt-complete set for \cNEXP is \reductionpNOR−tt-autoreducible either positively or negatively would lead to major results about the exponential time complexity classes

  • 关键词:autoreducibility; diagonalization; NEXP; Polynomial-time reductions
国家哲学社会科学文献中心版权所有