首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Lower bounds for depth 4 formulas computing iterated matrix multiplication
  • 本地全文:下载
  • 作者:Hervé Fournier ; Nutan Limaye ; Guillaume Malod
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2013
  • 卷号:2013
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    We study the arithmetic complexity of iterated matrix multiplication. We show that any multilinear homogeneous depth 4 arithmetic formula computing the product of d generic matrices of size nn, IMMnd, has size n(d) as long as dn110 . This improves the result of Nisan and Wigderson (Computational Complexity, 1997) for depth 4 set-multilinear formulas.

    We also study (O(dt))(t) formulas, which are depth 4 formulas with the stated bounds on the fan-ins of the gates. A recent depth reduction result of Tavenas (MFCS, 2013) shows that any n-variate degree d=nO(1) polynomial computable by a circuit of size poly(n) can also be computed by a depth 4 (O(dt))(t) formula of top fan-in nO(dt) . We show that any such formula computing IMMnd has top fan-in n(dt) , proving the optimality of Tavenas' result. This also strengthens a result of Kayal, Saha, and Saptharishi (ECCC, 2013) which gives a similar lower bound for an explicit polynomial in VNP.

  • 关键词:Depth reduction; Restrictions; Shifted partial derivatives
国家哲学社会科学文献中心版权所有