期刊名称:International Journal of Energy and Environment
印刷版ISSN:2076-2895
电子版ISSN:2076-2909
出版年度:2013
卷号:4
期号:5
页码:835-850
出版社:International Energy and Environment Foundation (IEEF)
摘要:It is well established that the power generated by a Horizontal-Axis Wind Turbine (HAWT) is a function of the number of blades B, the tip speed ratio λ (blade tip speed/wind free stream velocity) and the lift to drag ratio (CL /CD) of the airfoil sections of the blade. The airfoil sections used in HAWT are generally thick airfoils such as the S, DU, FX, Flat-back and NACA 6-series of airfoils. These airfoils vary in (CL /CD) for a given B and λ, and therefore the power generated by HAWT for different blade airfoil sections will vary. The goal of this paper is to evaluate the effect of different airfoil sections on HAWT performance using the Blade Element Momentum (BEM) theory. In this study, we employ DU 91-W2-250, FX 66-S196-V1, NACA 64421, and Flat-back series of airfoils (FB-3500-0050, FB-3500-0875, and FB-3500-1750) and compare their performance with S809 airfoil used in NREL Phase II and III wind turbines; the lift and drag coefficient data for these airfoils sections are available. The output power of the turbine is calculated using these airfoil section blades for a given B and λ and is compared with the original NREL Phase II and Phase III turbines using S809 airfoil section. It is shown that by a suitable choice of airfoil section of HAWT blade, the power generated by the turbine can be significantly increased. Parametric studies are also conducted by varying the turbine diameter.