首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Column-Store: Decision Tree Classification of Unseen Attribute Set
  • 本地全文:下载
  • 作者:Tejaswini Apte ; Maya Ingle ; A.K. Goyal
  • 期刊名称:International Journal of Database Management Systems
  • 印刷版ISSN:0975-5985
  • 电子版ISSN:0975-5705
  • 出版年度:2013
  • 卷号:5
  • 期号:6
  • DOI:10.5121/ijdms.2013.560335
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:A decision tree can be used for clustering of frequently used attributes to improve tuple reconstruction time in column-stores databases. Due to ad-hoc nature of queries, strongly correlative attributes are grouped together using a decision tree to share a common minimum support probability distribution. At the same time in order to predict the cluster for unseen attribute set, the decision tree may work as a classifier. In this paper we propose classification and clustering of unseen attribute set using decision tree to improve tuple reconstruction time
国家哲学社会科学文献中心版权所有