首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Determination of Uniaxial Compressive Strength and Modulus of Elasticity of Travertine using Machine Learning Techniques
  • 本地全文:下载
  • 作者:Manoj Kumar ; Pijush Samui ; Ajay Kumar Naithani
  • 期刊名称:International Journal of Advances in Soft Computing and Its Applications
  • 印刷版ISSN:2074-8523
  • 出版年度:2013
  • 卷号:5
  • 期号:3
  • 出版社:International Center for Scientific Research and Studies
  • 摘要:This article adopts machine learning techniques Relevance Vector Machine (RVM), Gaussian Process Regression (GPR) and Minimax Probability Machine Regression (MPMR)} for determination of Uniaxial Compressive Strength (UCS) and the Modulus of Elasticity (E) of Travertine samples. Point load index (Is(50)), porosity (n), P-wave velocity (Vp), and Schmidt hammer rebound number (Rn) have been taken as inputs of the RVM, GPR and MPMR model. The outputs of RVM, MPMR and GPR are UCS and E. The developed RVM gives equations for prediction UCS and E. The performance of GPR, MPMR and RVM has been compared with the Artificial Neural Network (ANN) models. The simulation results show that the proposed methods give encouraging performance for prediction of UCS and E of Travertine samples
  • 关键词:Uniaxial Compressive Strength; Modulus of Elasticity; Relevance ;Vector Machine; Gaussian Process Regression; Minimax Probability Machine ;Regression; Artificial Neural Network; Travertine samples
国家哲学社会科学文献中心版权所有