期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2013
卷号:110
期号:42
页码:16987-16992
DOI:10.1073/pnas.1313185110
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Aspirin-exacerbated respiratory disease (AERD) is characterized by asthma, tissue eosinophilia, overproduction of cysteinyl leukotrienes (cysLTs), and respiratory reactions to nonselective cyclooxygenase (COX) inhibitors. Ex vivo studies suggest that functional abnormalities of the COX-2/microsomal prostaglandin (PG)E2 synthase-1 system may underlie AERD. We demonstrate that microsomal PGE2 synthase-1 null mice develop a remarkably AERD-like phenotype in a model of eosinophilic pulmonary inflammation. Lysine aspirin (Lys-ASA)-challenged PGE2 synthase-1 null mice exhibit sustained increases in airway resistance, along with lung mast cell (MC) activation and cysLT overproduction. A stable PGE2 analog and a selective E prostanoid (EP)2 receptor agonist blocked the responses to Lys-ASA by [~]90%; EP3 and EP4 agonists were also active. The increases in airway resistance and MC products were blocked by antagonists of the type 1 cysLT receptor or 5-lipoxygenase, implying that bronchoconstriction and MC activation were both cysLT dependent. Lys-ASA-induced cysLT generation and MC activation depended on platelet-adherent granulocytes and T-prostanoid (TP) receptors. Thus, lesions that impair the inducible generation of PGE2 remove control of platelet/granulocyte interactions and TP-receptor-dependent cysLT production, permitting MC activation in response to COX-1 inhibition. The findings suggest applications of antiplatelet drugs or TP receptor antagonists for the treatment of AERD.