期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2013
卷号:110
期号:43
页码:17540-17545
DOI:10.1073/pnas.1311967110
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Astrocytes modulate neuronal activity, synaptic transmission, and behavior by releasing chemical transmitters in a process termed gliotransmission. Whether this process impacts epilepsy in vivo is not known. We show that genetic impairment of transmitter release from astrocytes by the expression of a glial dominant-negative SNARE domain in mice reduced epileptiform activity in situ, delayed seizure onset after pilocarpine-induced status epilepticus, and attenuated subsequent progressive increase in seizure frequency in vivo. The reduced seizure frequency was accompanied by attenuation of hippocampal damage and behavioral deficits. As the delay in seizure onset and the reduced seizure frequency were mimicked by intracerebroventricular delivery of the NMDA receptor (NMDAR) antagonist D-(-)-2-amino-5-phosphonopentanoate in WT littermates and because dominant-negative SNARE expression leads to a hypofunction of synaptic NMDARs, we conclude that astrocytes modulate epileptogenesis, recurrent spontaneous seizures, and pathophysiological consequences of epilepsy through a pathway involving NMDARs.