首页    期刊浏览 2024年07月01日 星期一
登录注册

文章基本信息

  • 标题:Fast and accurate nonenzymatic copying of an RNA-like synthetic genetic polymer
  • 本地全文:下载
  • 作者:Shenglong Zhang ; J. Craig Blain ; Daria Zielinska
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2013
  • 卷号:110
  • 期号:44
  • 页码:17732-17737
  • DOI:10.1073/pnas.1312329110
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Recent advances suggest that it may be possible to construct simple artificial cells from two subsystems: a self-replicating cell membrane and a self-replicating genetic polymer. Although multiple pathways for the growth and division of model protocell membranes have been characterized, no self-replicating genetic material is yet available. Nonenzymatic template-directed synthesis of RNA with activated ribonucleotide monomers has led to the copying of short RNA templates; however, these reactions are generally slow (taking days to weeks) and highly error prone. N3'-P5'-linked phosphoramidate DNA (3'-NP-DNA) is similar to RNA in its overall duplex structure, and is attractive as an alternative to RNA because the high reactivity of its corresponding monomers allows rapid and efficient copying of all four nucleobases on homopolymeric RNA and DNA templates. Here we show that both homopolymeric and mixed-sequence 3'-NP-DNA templates can be copied into complementary 3'-NP-DNA sequences. G:T and A:C wobble pairing leads to a high error rate, but the modified nucleoside 2-thiothymidine suppresses wobble pairing. We show that the 2-thiothymidine modification increases both polymerization rate and fidelity in the copying of a 3'-NP-DNA template into a complementary strand of 3'-NP-DNA. Our results suggest that 3'-NP-DNA has the potential to serve as the genetic material of artificial biological systems.
  • 关键词:origin of life ; nonenzymatic primer extension ; artificial genetic systems ; nucleotide modifications ; mismatch
国家哲学社会科学文献中心版权所有