首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Using proximity to compute semantic relatedness in RDF graphs
  • 本地全文:下载
  • 作者:Leal José Paulo
  • 期刊名称:Computer Science and Information Systems
  • 印刷版ISSN:1820-0214
  • 电子版ISSN:2406-1018
  • 出版年度:2013
  • 卷号:10
  • 期号:4
  • 页码:1727-1746
  • DOI:10.2298/CSIS121130060L
  • 出版社:ComSIS Consortium
  • 摘要:

    Extracting the semantic relatedness of terms is an important topic in several areas, including data mining, information retrieval and web recommendation. This paper presents an approach for computing the semantic relatedness of terns in RDF graphs based on the notion of proximity. It proposes a formal definition of proximity in terms of the set paths connecting two concept nodes, and an algorithm for finding this set and computing proximity with a given error margin. This algorithm was implemented on a tool called Shakti that extracts relevant ontological data for a given domain from DBpedia - a community effort to extract structured data from the Wikipedia. To validate the proposed approach Shakti was used to recommend web pages on a Portuguese social site related to alternative music and the results of that experiment are also reported.

  • 关键词:semantic similarity; semantic relatedness; ontology generation; web recommendation; processing Wikipedia data
国家哲学社会科学文献中心版权所有