期刊名称:Euro Area Balance of Payments and International Investment Position Statistics
印刷版ISSN:1830-3420
电子版ISSN:1830-3439
出版年度:2008
卷号:1
出版社:European Central Bank
摘要:In this study we combine clustering techniques with a moving window algorithm in order to filter financial market data outliers. We apply the algorithm to a set of financial market data which consists of 25 series selected from a larger dataset using a cluster analysis technique taking into account the daily behaviour of the market; each of these series is an element of a cluster that represents a different segment of the market. We set up a framework of possible algorithm parameter combinations that detect most of the outliers by market segment. In addition, the algorithm parameters that have been found can also be used to detect outliers in other series with similar economic behaviour in the same cluster. Moreover, the crosschecking of the behaviour of different series within each cluster reduces the possibility of observations being misclassified as outliers.