首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:An Activation Method of Topic Dictionary to Expand Training Data for Trend Rule Discovery
  • 本地全文:下载
  • 作者:Shigeaki Sakurai ; Kyoko Makino ; Shigeru Matsumoto
  • 期刊名称:Applied Computational Intelligence and Soft Computing
  • 印刷版ISSN:1687-9724
  • 电子版ISSN:1687-9732
  • 出版年度:2014
  • 卷号:2014
  • DOI:10.1155/2014/871412
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This paper improves a method which predicts whether evaluation objects such as companies and products are to be attractive in near future. The attractiveness is evaluated by trend rules. The trend rules represent relationships among evaluation objects, keywords, and numerical changes related to the evaluation objects. They are inductively acquired from text sequential data and numerical sequential data. The method assigns evaluation objects to the text sequential data by activating a topic dictionary. The dictionary describes keywords representing the numerical change. It can expand the amount of the training data. It is anticipated that the expansion leads to the acquisition of more valid trend rules. This paper applies the method to a task which predicts attractive stock brands based on both news headlines and stock price sequences. It shows that the method can improve the detection performance of evaluation objects through numerical experiments.
国家哲学社会科学文献中心版权所有