摘要:For the first time we present electronic band structure and density of states for nitrogen doped hexagonal ultrathin boron nanotubes in the framework of density functional theory. The considered models of nanotubes below 5 Å diameter are armchair (3,3), zigzag (5,0), and chiral (4,2). The impurity chosen for the study is nitrogen and concentration of impurity atoms is limited to two. The study reveals that (3,3) BNT retains its metallic nature after nitrogen doping. However, metallicity gets increased which is attributed by the excess electrons of nitrogen. Further, it also brings out that (5,0) BNT which is originally metal transforms into semiconductor after nitrogen interaction and the band gap at G point increases with the impurity. Moreover, the band gap of (4,2) BNT reduces significantly and turns into semimetal for nitrogen doping. Thus, the nitrogen impurity has the predominant effect on the electronic properties of BNTs and therefore can be regarded as suitable candidates for nanoelectronic and field emission devices.