期刊名称:International Journal of Distributed Sensor Networks
印刷版ISSN:1550-1329
电子版ISSN:1550-1477
出版年度:2014
卷号:2014
DOI:10.1155/2014/682032
出版社:Hindawi Publishing Corporation
摘要:Optimizing the design of tracking system under energy and bandwidth constraints in wireless sensor networks (WSN) is of paramount importance. In this paper, the problem of collaborative target tracking in WSNs is considered in a framework of quantized measurement fusion. First, the measurement in each local sensor is quantized by probabilistic quantization scheme and transmitted to a fusion center (FC). Then, the quantized messages are fused and sequential importance resampling (SIR) particle filtering is employed to estimate the target state. In the FC, quantized measurement fusion via both augmented approach and weighted approach is investigated. For both approaches, the closed-form solution to the optimization problem of bandwidth scheduling is given, where the total energy consumption is minimized subject to a constraint on the fusion performance. Finally, posterior Cramer-Rao lower bounds (CRLBs) on the tracking accuracy using quantized measurement fusion are derived. Simulation results reveal that both approaches perform very closely to the posterior CRLB while obtaining average communication energy saving up to 72.8% and 45.1%, respectively.