首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:A Computational Study Assessing Maximum Likelihood and Noniterative Methods for Estimating the Linear-by-Linear Parameter for Ordinal Log-Linear Models
  • 本地全文:下载
  • 作者:Eric J. Beh ; Thomas B. Farver
  • 期刊名称:ISRN Computational Mathematics
  • 电子版ISSN:2090-7842
  • 出版年度:2012
  • 卷号:2012
  • DOI:10.5402/2012/396831
  • 出版社:Hindawi Publishing Corporation
  • 摘要:For ordinal log-linear models, the estimation of the parameter reflecting the linear-by-linear measure of association has long been a topic for the analysis of dependence for contingency tables. Typically, iterative procedures (including Newton’s method) are used to determine the maximum likelihood estimate of the parameter. Recently Beh and Farver (2009, ANZJS, 51, 335–352) show by way of example three reliable and accurate noniterative techniques that can be used to estimate the parameter and extended this study by examining their reliability computationally. This paper further investigates the reliability of the non-iterative procedures when compared with Newton’s method for estimating this association parameter and considers the impact of the sample size on the estimate.
国家哲学社会科学文献中心版权所有