首页    期刊浏览 2024年09月29日 星期日
登录注册

文章基本信息

  • 标题:Impact of Permeation Properties and Backsheet-Encapsulant Interactions on the Reliability of PV Modules
  • 本地全文:下载
  • 作者:Cornelia Peike ; Philip Hülsmann ; Matthias Blüml
  • 期刊名称:ISRN Renewable Energy
  • 印刷版ISSN:2090-7451
  • 电子版ISSN:2090-746X
  • 出版年度:2012
  • 卷号:2012
  • DOI:10.5402/2012/459731
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The reliability of photovoltaic modules is highly influenced by the material properties of the backsheet and encapsulation material. Currently, little attention is paid to the permeation properties of the back-sheet material or to its impact on encapsulation degradation and module reliability. We investigated the interaction of different types of solar encapsulation and back-sheet materials. Therefore, various laminates were made to examine the environmental impact on such materials during the aging processes. One focus of our study lies in oxygen and water vapor permeability of the back-sheet materials. The encapsulants used were an ethylene vinyl acetate (EVA), a TPSE (thermoplastic silicone elastomer), an ionomer, and a PVB (polyvinyl butyral). Back-sheet materials were a TPT (Tedlar-PET-Tedlar) foil, a polyamide (PA) sheet and a polyethylene terephthalate (PET) composite film. Raman spectroscopic and FT-IR/vis-reflectance measurements were carried out before and after different accelerated aging procedures. The water vapor and oxygen permeation properties were measured. A clear correlation between the permeation properties and the observed aging behavior was found. The degradation, especially of the encapsulant, resulted in increased fluorescence background in the Raman spectra. It could be shown that the encapsulation-cell-backsheet system should be optimized in order to minimize the stress on the PV-module components.
国家哲学社会科学文献中心版权所有