首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Hydraulic design of a low-specific speed Francis runner for a hydraulic cooling tower
  • 本地全文:下载
  • 作者:H Ruan ; X Q Luo ; W L Liao
  • 期刊名称:IOP Conference Series: Earth and Environmental Science
  • 印刷版ISSN:1755-1307
  • 电子版ISSN:1755-1315
  • 出版年度:2012
  • 卷号:15
  • 期号:3
  • DOI:10.1088/1755-1315/15/3/032011
  • 出版社:IOP Publishing
  • 摘要:The air blower in a cooling tower is normally driven by an electromotor, and the electric energy consumed by the electromotor is tremendous. The remaining energy at the outlet of the cooling cycle is considerable. This energy can be utilized to drive a hydraulic turbine and consequently to rotate the air blower. The purpose of this project is to recycle energy, lower energy consumption and reduce pollutant discharge. Firstly, a two-order polynomial is proposed to describe the blade setting angle distribution law along the meridional streamline in the streamline equation. The runner is designed by the point-to-point integration method with a specific blade setting angle distribution. Three different ultra-low-specificspeed Francis runners with different wrap angles are obtained in this method. Secondly, based on CFD numerical simulations, the effects of blade setting angle distribution on pressure coefficient distribution and relative efficiency have been analyzed. Finally, blade angles of inlet and outlet and control coefficients of blade setting angle distribution law are optimal variables, efficiency and minimum pressure are objective functions, adopting NSGA-II algorithm, a multi-objective optimization for ultra-low-specific speed Francis runner is carried out. The obtained results show that the optimal runner has higher efficiency and better cavitation performance.
国家哲学社会科学文献中心版权所有