This study concerns the simulation of the implementation of the Kinetic Differential Pressure (KDP) method used for the unsteady mass flow rate evaluation in order to identify the dynamic transfer matrix of a cavitatingVenturi. Firstly, the equations of the IZ code used for this simulation are introduced. Next, the methodology for evaluating unsteady pressures and mass flow rates at the inlet and the outlet of the cavitatingVenturi and for identifying the dynamic transfer matrix is presented. Later, the robustness of the method towards measurement uncertainties implemented as a Gaussian white noise is studied. The results of the numerical simulations let us estimate the system linearity domain and to perform the Empirical Transfer Function Evaluation on the inlet frequency per frequency signal and on the chirp signal tests. Then the pressure data obtained with the KDP method is taken and the identification procedure by ETFE and by the user-made Auto-Recursive Moving-Average eXogenous algorithms is performed and the obtained transfer matrix coefficients are compared with those obtained from the simulated input and output data.