期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2014
卷号:111
期号:4
页码:1316-1321
DOI:10.1073/pnas.1319569111
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Mechanical loading of joints plays a critical role in maintaining the health and function of articular cartilage. The mechanism(s) of chondrocyte mechanotransduction are not fully understood, but could provide important insights into new physical or pharmacologic therapies for joint diseases. Transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable osmomechano-TRP channel, is highly expressed in articular chondrocytes, and loss of TRPV4 function is associated with joint arthropathy and osteoarthritis. The goal of this study was to examine the hypothesis that TRPV4 transduces dynamic compressive loading in articular chondrocytes. We first confirmed the presence of physically induced, TRPV4-dependent intracellular Ca2+ signaling in agarose-embedded chondrocytes, and then used this model system to study the role of TRPV4 in regulating the response of chondrocytes to dynamic compression. Inhibition of TRPV4 during dynamic loading prevented acute, mechanically mediated regulation of proanabolic and anticatabolic genes, and furthermore, blocked the loading-induced enhancement of matrix accumulation and mechanical properties. Furthermore, chemical activation of TRPV4 by the agonist GSK1016790A in the absence of mechanical loading similarly enhanced anabolic and suppressed catabolic gene expression, and potently increased matrix biosynthesis and construct mechanical properties. These findings support the hypothesis that TRPV4-mediated Ca2+ signaling plays a central role in the transduction of mechanical signals to support cartilage extracellular matrix maintenance and joint health. Moreover, these insights raise the possibility of therapeutically targeting TRPV4-mediated mechanotransduction for the treatment of diseases such as osteoarthritis, as well as to enhance matrix formation and functional properties of tissue-engineered cartilage as an alternative to bioreactor-based mechanical stimulation.