期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2014
卷号:111
期号:4
页码:E417-E425
DOI:10.1073/pnas.1317267111
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Which aspects of our sensory environment enter conscious awareness does not only depend on physical features of the stimulus, but also critically on the so-called current brain state. Results from magnetoencephalography/EEG studies using near-threshold stimuli have consistently pointed to reduced levels of - (8-12 Hz) power in relevant sensory areas to predict whether a stimulus will be consciously perceived or not. These findings have been mainly interpreted in strictly "local" terms of enhanced excitability of neuronal ensembles in respective cortical regions. The present study aims to introduce a framework that complements this rather local perspective, by stating that the functional connectivity architecture before stimulation will predetermine information flow. Thus, information computed at a local level will be distributed throughout a network, thereby becoming consciously accessible. Data from a previously published experiment on conscious somatosensory near-threshold perception was reanalyzed focusing on the prestimulus period. Analysis of spectral power showed reduced -power mainly in the contralateral S2 and middle frontal gyrus to precede hits, thus overall supporting the current literature. Furthermore, differences between hits and misses were obtained on global network (graph theoretical) features in the same interval. Most importantly, in accordance with our framework, we could show that the somatosensory cortex is "more efficiently" integrated into a distributed network in the prestimulus period. This finding means that when a relevant sensory stimulus impinges upon the system, it will encounter preestablished pathways for information flow. In this sense, prestimulus functional connectivity patterns form "windows" to conscious perception.