首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Bayesian approaches to acoustic modeling: a review
  • 本地全文:下载
  • 作者:Shinji Watanabe ; Atsushi Nakamura
  • 期刊名称:APSIPA Transactions on Signal and Information Processing
  • 印刷版ISSN:2048-7703
  • 电子版ISSN:2048-7703
  • 出版年度:2012
  • 卷号:1
  • 页码:e5
  • DOI:10.1017/ATSIP.2012.6
  • 语种:English
  • 出版社:Cambridge University Press
  • 摘要:

    This paper focuses on applications of Bayesian approaches to acoustic modeling for speech recognition and related speech-processing applications. Bayesian approaches have been widely studied in the fields of statistics and machine learning, and one of their advantages is that their generalization capability is better than that of conventional approaches (e.g., maximum likelihood). On the other hand, since inference in Bayesian approaches involves integrals and expectations that are mathematically intractable in most cases and require heavy numerical computations, it is generally difficult to apply them to practical speech recognition problems. However, there have been many such attempts, and this paper aims to summarize these attempts to encourage further progress on Bayesian approaches in the speech-processing field. This paper describes various applications of Bayesian approaches to speech processing in terms of the four typical ways of approximating Bayesian inferences, i.e., maximum a posteriori approximation, model complexity control using a Bayesian information criterion based on asymptotic approximation, variational approximation, and Markov chain Monte Carlo-based sampling techniques.

  • 关键词:Speech processing; Machine learning; Bayesian approach; Approximate Bayesian inference
国家哲学社会科学文献中心版权所有