首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Latent acoustic topic models for unstructured audio classification
  • 本地全文:下载
  • 作者:Samuel Kim ; Panayiotis Georgiou ; Shrikanth Narayanan
  • 期刊名称:APSIPA Transactions on Signal and Information Processing
  • 印刷版ISSN:2048-7703
  • 电子版ISSN:2048-7703
  • 出版年度:2012
  • 卷号:1
  • 页码:e6
  • DOI:10.1017/ATSIP.2012.7
  • 语种:English
  • 出版社:Cambridge University Press
  • 摘要:

    We propose the notion of latent acoustic topics to capture contextual information embedded within a collection of audio signals. The central idea is to learn a probability distribution over a set of latent topics of a given audio clip in an unsupervised manner, assuming that there exist latent acoustic topics and each audio clip can be described in terms of those latent acoustic topics. In this regard, we use the latent Dirichlet allocation (LDA) to implement the acoustic topic models over elemental acoustic units, referred as acoustic words, and perform text-like audio signal processing. Experiments on audio tag classification with the BBC sound effects library demonstrate the usefulness of the proposed latent audio context modeling schemes. In particular, the proposed method is shown to be superior to other latent structure analysis methods, such as latent semantic analysis and probabilistic latent semantic analysis. We also demonstrate that topic models can be used as complementary features to content-based features and offer about 9% relative improvement in audio classification when combined with the traditional Gaussian mixture model (GMM)–Support Vector Machine (SVM) technique.

  • 关键词:Unstructured Audio; Latent topic models; Audio information retrieval; text-like audio signal processing; Acoustic topic models
国家哲学社会科学文献中心版权所有