摘要:A Wireless Sensor Network (WSN) is a collection of low-cost, low-power and large-scale wireless sensor nodes. Routing protocols are an important topic in WSN. Every sensor node should use a proper mechanism to transmit the generated packets to its destination, usually a base station. In previous works, routing protocols use the global information of the network that causes the redundant packets to be increased. Moreover, it leads to an increase in the network traffic, to a decrease in the delivery ratio of data packets, and to a reduction in network life. In this paper, we propose a new inferential routing protocol called SFRRP (Static Three-Dimensional Fuzzy Routing based on the Receiving Probability). The proposed protocol solves the above mentioned problems considerably. The data packets are transmitted by hop-to-hop delivery to the base station. It uses a fuzzy procedure to transmit the sensed data or the buffered data packets to one of the neighbors called selected node. In the proposed fuzzy system, the distance and number of neighbors are input variables, while the receiving probability is the output variable. SFRRP just uses the local neighborhood information to forward the packets and is not needed by any redundant packet for route discovery. The proposed protocol has some advantages such as a high delivery ratio, less delay time, high network life, and less network traffic. The performance of the proposed protocol surpasses the performance of the Flooding routing protocol in terms of delivery ratio, delay time and network lifetime.