首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Exploring Graphics Processing Unit (GPU) Resource Sharing Efficiency for High Performance Computing
  • 本地全文:下载
  • 作者:Teng Li ; Vikram K. Narayana ; Tarek El-Ghazawi
  • 期刊名称:Computers
  • 电子版ISSN:2073-431X
  • 出版年度:2013
  • 卷号:2
  • 期号:4
  • 页码:176-214
  • DOI:10.3390/computers2040176
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:The increasing incorporation of Graphics Processing Units (GPUs) as accelerators has been one of the forefront High Performance Computing (HPC) trends and provides unprecedented performance; however, the prevalent adoption of the Single-Program Multiple-Data (SPMD) programming model brings with it challenges of resource underutilization. In other words, under SPMD, every CPU needs GPU capability available to it. However, since CPUs generally outnumber GPUs, the asymmetric resource distribution gives rise to overall computing resource underutilization. In this paper, we propose to efficiently share the GPU under SPMD and formally define a series of GPU sharing scenarios. We provide performance-modeling analysis for each sharing scenario with accurate experimentation validation. With the modeling basis, we further conduct experimental studies to explore potential GPU sharing efficiency improvements from multiple perspectives. Both further theoretical and experimental GPU sharing performance analysis and results are presented. Our results not only demonstrate the significant performance gain for SPMD programs with the proposed efficient GPU sharing, but also the further improved sharing efficiency with the optimization techniques based on our accurate modeling.
  • 关键词:GPU; resource sharing; SPMD; performance modeling; high performance computing
国家哲学社会科学文献中心版权所有