首页    期刊浏览 2025年02月18日 星期二
登录注册

文章基本信息

  • 标题:Improving Anomaly Detection for Text-Based Protocols by Exploiting Message Structures
  • 本地全文:下载
  • 作者:Martin Güthle ; Jochen Kögel ; Stefan Wahl
  • 期刊名称:Future Internet
  • 电子版ISSN:1999-5903
  • 出版年度:2010
  • 卷号:2
  • 期号:4
  • 页码:662-669
  • DOI:10.3390/fi2040662
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:Service platforms using text-based protocols need to be protected against attacks. Machine-learning algorithms with pattern matching can be used to detect even previously unknown attacks. In this paper, we present an extension to known Support Vector Machine (SVM) based anomaly detection algorithms for the Session Initiation Protocol (SIP). Our contribution is to extend the amount of different features used for classification (feature space) by exploiting the structure of SIP messages, which reduces the false positive rate. Additionally, we show how combining our approach with attribute reduction significantly improves throughput.
  • 关键词:anomaly detection; classification; text-based protocols; SIP; SVM
国家哲学社会科学文献中心版权所有