摘要:Convergecast is the transmission paradigm used by data gathering applications in wireless sensor networks (WSNs). For efficiency reasons, a collision-free slotted medium access is typically used: time slots are assigned to non-conflicting transmitters. Furthermore, in any slot, only the transmitters and the corresponding receivers are awake, the other nodes sleeping in order to save energy. Since a multichannel network increases the throughput available to the application and reduces interference, multichannel slot assignment is an emerging research domain in WSNs. First, we focus on a multichannel time slot assignment that minimizes the data gathering delays. We compute the optimal time needed for a raw data convergecast in various multichannel topologies. Then, we focus on how to adapt such an assignment to dynamic demands of transmissions (e.g., alarms, temporary additional application needs and retransmissions). We formalize the problem using linear programming, and we propose an incremental technique that operates on an optimized primary schedule to provide bonus slots to meet new transmission needs. We propose AMSA, an Adaptive Multichannel Slot Assignment algorithm, which takes advantage of bandwidth spatial reuse, and we evaluate its performances in terms of the number of slots required, slot reuse, throughput and the number of radio state switches.