首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water
  • 本地全文:下载
  • 作者:Zack Norwood ; Daniel Kammen
  • 期刊名称:Environmental Research Letters
  • 印刷版ISSN:1748-9326
  • 电子版ISSN:1748-9326
  • 出版年度:2012
  • 卷号:7
  • 期号:4
  • 页码:044016
  • DOI:10.1088/1748-9326/7/4/044016
  • 语种:English
  • 出版社:IOP Publishing Ltd
  • 摘要:We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of $0.25 kWh−1 electricity and $0.03 kWh−1 thermal, for a system with a life cycle global warming potential of ~80 gCO2eq kWh−1 of electricity and ~10 gCO2eq kWh−1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of $1.40 m−3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that $0.40–$1.90 m−3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.
国家哲学社会科学文献中心版权所有