首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Shifts in Arctic phenology in response to climate and anthropogenic factors as detected from multiple satellite time series
  • 本地全文:下载
  • 作者:Heqing Zeng ; Gensuo Jia ; Bruce C Forbes
  • 期刊名称:Environmental Research Letters
  • 印刷版ISSN:1748-9326
  • 电子版ISSN:1748-9326
  • 出版年度:2013
  • 卷号:8
  • 期号:3
  • 页码:035036
  • DOI:10.1088/1748-9326/8/3/035036
  • 语种:English
  • 出版社:IOP Publishing Ltd
  • 摘要:There is an urgent need to reduce the uncertainties in remotely sensed detection of phenological shifts of high latitude ecosystems in response to climate changes in past decades. In this study, vegetation phenology in western Arctic Russia (the Yamal Peninsula) was investigated by analyzing and comparing Normalized Difference Vegetation Index (NDVI) time series derived from the Advanced Very High Resolution Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and SPOT-Vegetation (VGT) during the decade 2000–2010. The spatial patterns of key phenological parameters were highly heterogeneous along the latitudinal gradients based on multi-satellite data. There was earlier SOS (start of the growing season), later EOS (end of the growing season), longer LOS (length of the growing season), and greater MaxNDVI from north to south in the region. The results based on MODIS and VGT data showed similar trends in phenological changes from 2000 to 2010, while quite a different trend was found based on AVHRR data from 2000 to 2008. A significantly delayed EOS (p < 0.01), thus increasing the LOS, was found from AVHRR data, while no similar trends were detected from MODIS and VGT data. There were no obvious shifts in MaxNDVI during the last decade. MODIS and VGT data were considered to be preferred data for monitoring vegetation phenology in northern high latitudes. Temperature is still a key factor controlling spatial phenological gradients and variability, while anthropogenic factors (reindeer husbandry and resource exploitation) might explain the delayed SOS in southern Yamal. Continuous environmental damage could trigger a positive feedback to the delayed SOS.
国家哲学社会科学文献中心版权所有