首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:UARR: A Novel Similarity Measure for Collaborative Filtering Recommendation
  • 本地全文:下载
  • 作者:Y. Huang ; X. Gao ; S. Gu
  • 期刊名称:Cybernetics and Information Technologies
  • 印刷版ISSN:1311-9702
  • 电子版ISSN:1314-4081
  • 出版年度:2013
  • 卷号:13
  • 期号:Special
  • DOI:10.2478/cait-2013-0043
  • 出版社:Bulgarian Academy of Science
  • 摘要:User similarity measurement plays a key role in collaborative filtering recommendation which is the most widely applied technique in recommender systems. Traditional user-based collaborative filtering recommendation methods focus on absolute rating difference of common rated items while neglecting the relative rating level difference to the same items. In order to overcome this drawback, we propose a novel user similarity measure which takes into account the degree of rating the level gap that users could accept. The results of collaborative filtering recommendation based on User Acceptable Rating Radius (UARR) on a real movie rating data set, the MovieLens data set, prove to generate more accurate prediction results compared to the traditional similarity methods
  • 关键词:Collaborative filtering; recommender system; user similarity ;measurement; User Acceptable Rating Radius (UARR).
国家哲学社会科学文献中心版权所有