首页    期刊浏览 2025年07月09日 星期三
登录注册

文章基本信息

  • 标题:Multicollinearity and maximum entropy estimators
  • 本地全文:下载
  • 作者:Quirino Paris
  • 期刊名称:Economics Bulletin
  • 电子版ISSN:1545-2921
  • 出版年度:2001
  • 卷号:3
  • 出版社:Economics Bulletin
  • 摘要:Multicollinearity hampers empirical econometrics. The remedies proposed to date suffer from pitfalls of their own. The ridge estimator is not generally accepted as a vital alternative to the ordinary least-squares (OLS) estimator because it depends upon unknown parameters. The generalized maximum entropy estimator depends upon subjective exogenous information. This paper presents a novel maximum entropy estimator that does not depend upon any additional information. Monte Carlo experiments show that it is not affected by any level of multicollinearity and dominates the OLS estimator uniformely. The same experiments provide evidence that it is asymptotically unbiased and its estimates are normally distributed.
国家哲学社会科学文献中心版权所有