期刊名称:International Journal of Statistics and Probability
印刷版ISSN:1927-7032
电子版ISSN:1927-7040
出版年度:2014
卷号:3
期号:2
页码:101
DOI:10.5539/ijsp.v3n2p101
出版社:Canadian Center of Science and Education
摘要:For fitness preferential attachment random networks, we define the empirical degree and pair measure, which counts the number of vertices of a given degree and the number of edges with given fits, and the sample path empirical degree distribution. For the empirical degree and pair distribution for the fitness preferential attachment random networks, we find a large deviation upper bound. From this result we obtain a weak law of large numbers for the empirical degree and pair distribution, and the basic information theorem or an asymptotic equipartition property for fitness preferential attachment random networks.