首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Large Deviations, Basic Information Theorem for Fitness Preferential Attachment Random Networks
  • 本地全文:下载
  • 作者:K. Doku-Amponsah ; F. Mettle ; T. Ansah-Narh
  • 期刊名称:International Journal of Statistics and Probability
  • 印刷版ISSN:1927-7032
  • 电子版ISSN:1927-7040
  • 出版年度:2014
  • 卷号:3
  • 期号:2
  • 页码:101
  • DOI:10.5539/ijsp.v3n2p101
  • 出版社:Canadian Center of Science and Education
  • 摘要:For fitness preferential attachment random networks, we define the empirical degree and pair measure, which counts the number of vertices of a given degree and the number of edges with given fits, and the sample path empirical degree distribution. For the empirical degree and pair distribution for the fitness preferential attachment random networks, we find a large deviation upper bound. From this result we obtain a weak law of large numbers for the empirical degree and pair distribution, and the basic information theorem or an asymptotic equipartition property for fitness preferential attachment random networks.
国家哲学社会科学文献中心版权所有