首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Modelling and Analysis on Noisy Financial Time Series
  • 本地全文:下载
  • 作者:Jinsong Leng
  • 期刊名称:Journal of Computer and Communications
  • 印刷版ISSN:2327-5219
  • 电子版ISSN:2327-5227
  • 出版年度:2014
  • 卷号:2
  • 期号:2
  • 页码:64-69
  • DOI:10.4236/jcc.2014.22012
  • 出版社:Scientific Research Publishing
  • 摘要:Building the prediction model(s) from the historical time series has attracted many researchers in last few decades. For example, the traders of hedge funds and experts in agriculture are demanding the precise models to make the prediction of the possible trends and cycles. Even though many statistical or machine learning (ML) models have been proposed, however, there are no universal solutions available to resolve such particular problem. In this paper, the powerful forward-backward non-linear filter and wavelet-based denoising method are introduced to remove the high level of noise embedded in financial time series. With the filtered time series, the statistical model known as autoregression is utilized to model the historical times aeries and make the prediction. The proposed models and approaches have been evaluated using the sample time series, and the experimental results have proved that the proposed approaches are able to make the precise prediction very efficiently and effectively.
  • 关键词:Financial Time Series; Filtering and Denoising; Autoregression; Modelling and Prediction
国家哲学社会科学文献中心版权所有