期刊名称:Journal of Intelligent Learning Systems and Applications
印刷版ISSN:2150-8402
电子版ISSN:2150-8410
出版年度:2014
卷号:6
期号:1
页码:35-44
DOI:10.4236/jilsa.2014.61004
出版社:Scientific Research Publishing
摘要:In this work, a nonlinear model predictive
controller is developed for a batch polymerization process. The physical model
of the process is parameterized along a desired trajectory resulting in a
trajectory linearized piecewise model (a multiple linear model bank) and the
parameters are identified for an experimental polymerization reactor. Then, a multiple
model adaptive predictive controller is designed for thermal trajectory
tracking of the MMA polymerization. The input control signal to the process is
constrained by the maximum thermal power provided by the heaters. The
constrained optimization in the model predictive controller is solved via genetic
algorithms to minimize a DMC cost function in each sampling interval.