期刊名称:Applied Computational Intelligence and Soft Computing
印刷版ISSN:1687-9724
电子版ISSN:1687-9732
出版年度:2014
卷号:2014
DOI:10.1155/2014/494271
出版社:Hindawi Publishing Corporation
摘要:This paper presents improved versions of bacterial foraging algorithm (BFA). The chemotaxis feature of bacteria through random motion is an effective strategy for exploring the optimum point in a search area. The selection of small step size value in the bacteria motion leads to high accuracy in the solution but it offers slow convergence. On the contrary, defining a large step size in the motion provides faster convergence but the bacteria will be unable to locate the optimum point hence reducing the fitness accuracy. In order to overcome such problems, novel linear and nonlinear mathematical relationships based on the index of iteration, index of bacteria, and fitness cost are adopted which can dynamically vary the step size of bacteria movement. The proposed algorithms are tested with several unimodal and multimodal benchmark functions in comparison with the original BFA. Moreover, the application of the proposed algorithms in modelling of a twin rotor system is presented. The results show that the proposed algorithms outperform the predecessor algorithm in all test functions and acquire better model for the twin rotor system.