文章基本信息
标题: Hermitian <svg style="vertical-align:-3.06pt;width:45.575001px;" id="M1" height="19.9" version="1.1" viewBox="0 0 45.575001 19.9" width="45.575001" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg">
<g transform="matrix(.022,-0,0,-.022,.062,16.025)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z" /></g><g transform="matrix(.022,-0,0,-.022,7.819,16.025)"><path id="x1D716" d="M401 397q0 -24 -24 -40q-18 -13 -31 3q-36 45 -93 45q-48 0 -86.5 -43t-51.5 -112l206 6l-8 -48l-203 6v-25q0 -68 26.5 -107t73.5 -39q73 0 148 64l16 -22q-40 -44 -91 -70.5t-102 -26.5q-75 0 -116.5 45t-41.5 136q0 125 99 208q36 30 87 50.5t93 20.5q46 0 72.5 -16
t26.5 -35z" /></g><g transform="matrix(.022,-0,0,-.022,17.323,16.025)"><path id="x2C" d="M95 130q31 0 61 -30t30 -78q0 -53 -38 -87.5t-93 -51.5l-11 29q77 31 77 85q0 26 -17.5 43t-44.5 24q-4 0 -8.5 6.5t-4.5 17.5q0 18 15 30t34 12z" /></g><g transform="matrix(.022,-0,0,-.022,26.155,16.025)"><path id="x1D6FF" d="M494 514l-10 -15q-56 76 -106.5 117t-110.5 41q-45 0 -45 -30q0 -28 109 -152q59 -68 86 -118.5t27 -107.5q0 -62 -29.5 -119.5t-86.5 -96.5q-64 -45 -138 -45q-76 0 -121.5 53t-45.5 136q0 74 40.5 135t98.5 95q43 26 87 42q-40 59 -57.5 92t-17.5 62q0 46 39 77.5
t90 31.5q54 0 97.5 -35.5t65 -78.5t28.5 -84zM359 234q0 84 -90 191q-47 -17 -74 -47q-81 -89 -81 -200q0 -71 32.5 -109.5t72.5 -38.5q47 0 80 33t46.5 77.5t13.5 93.5z" /></g><g transform="matrix(.022,-0,0,-.022,37.744,16.025)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z" /></g>
</svg>-Freudenthal-Kantor Triple Systems and Certain Applications of <i >*</i>-Generalized Jordan Triple Systems to Field Theory 本地全文: 下载 作者: Noriaki Kamiya ; Matsuo Sato 期刊名称: Advances in High Energy Physics 印刷版ISSN: 1687-7357 电子版ISSN: 1687-7365 出版年度: 2014 卷号: 2014 DOI: 10.1155/2014/310264 出版社: Hindawi Publishing Corporation 摘要: We define Hermitian -Freudenthal-Kantor triple systems and prove a structure theorem. We also give some examples of triple systems that are generalizations of the and Hermitian 3-algebras. We apply a -generalized Jordan triple system to a field theory and obtain a Chern-Simons gauge theory. We find that the novel Higgs mechanism works, where the Chern-Simons gauge theory reduces to a Yang-Mills theory in a certain limit.