首页    期刊浏览 2024年11月05日 星期二
登录注册

文章基本信息

  • 标题:<svg style="vertical-align:-0.216pt;width:62.762501px;" id="M1" height="14.9625" version="1.1" viewBox="0 0 62.762501 14.9625" width="62.762501" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.022,-0,0,-.022,.062,14.638)"><path id="x33" d="M285 378v-2q65 -13 102 -54.5t37 -97.5q0 -57 -30.5 -104.5t-74 -75t-85.5 -42t-72 -14.5q-31 0 -59.5 11t-40.5 23q-19 18 -16 36q1 16 23 33q13 10 24 0q58 -51 124 -51q55 0 88 40t33 112q0 64 -39 96.5t-88 32.5q-29 0 -64 -11l-6 29q77 25 118 57.5t41 84.5&#xA;q0 45 -26.5 69.5t-68.5 24.5q-67 0 -120 -79l-20 20l43 63q51 56 127 56h1q66 0 107 -37t41 -95q0 -42 -31 -71q-22 -23 -68 -54z" /></g><g transform="matrix(.022,-0,0,-.022,15.799,14.638)"><path id="x2B" d="M535 230h-212v-233h-58v233h-213v50h213v210h58v-210h212v-50z" /></g><g transform="matrix(.022,-0,0,-.022,33.933,14.638)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z" /></g><g transform="matrix(.022,-0,0,-.022,44.693,14.638)"><path id="x1D437" d="M780 372q0 -191 -178 -297q-128 -75 -335 -75h-250l7 27q61 7 77 22t28 76l77 398q11 62 0 76.5t-77 22.5l6 28h292q164 0 258.5 -67.5t94.5 -210.5zM678 375q0 119 -73 180.5t-201 61.5q-62 0 -82 -13q-17 -7 -25 -53l-80 -427q-8 -47 -4 -62t26 -20q24 -6 80 -6&#xA;q166 0 262.5 95t96.5 244z" /></g> </svg> Massless Weyl Spinors from Bosonic Scalar-Tensor Duality
  • 本地全文:下载
  • 作者:Andrea Amoretti ; Alessandro Braggio ; Giacomo Caruso
  • 期刊名称:Advances in High Energy Physics
  • 印刷版ISSN:1687-7357
  • 电子版ISSN:1687-7365
  • 出版年度:2014
  • 卷号:2014
  • DOI:10.1155/2014/635286
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We consider the fermionization of a bosonic-free theory characterized by the scalar-tensor duality. This duality can be interpreted as the dimensional reduction, via a planar boundary, of the topological BF theory. In this model, adopting the Sommerfield tomographic representation of quantized bosonic fields, we explicitly build a fermionic operator and its associated Klein factor such that it satisfies the correct anticommutation relations. Interestingly, we demonstrate that this operator satisfies the massless Dirac equation and that it can be identified with a Weyl spinor. Finally, as an explicit example, we write the integrated charge density in terms of the tomographic transformed bosonic degrees of freedom.
国家哲学社会科学文献中心版权所有