摘要:The power of one qubit deterministic quantum processor (DQC1) (Knill and Laflamme (1998)) generates a nonclassical correlation known as quantum discord. The DQC1 algorithm executes in an efficient way with a characteristic time given by , where is an qubit unitary gate. For pure states, quantum discord means entanglement while for mixed states such a quantity is more than entanglement. Quantum discord can be thought of as the mutual information between two systems. Within the quantum discord approach the role of time in an efficient evaluation of is discussed. It is found that the smaller the value of is, where is the time of execution of the DQC1 algorithm and is the scale of time where the nonclassical correlations prevail, the more efficient the calculation of is. A Mösbauer nucleus might be a good processor of the DQC1 algorithm while a nuclear spin chain would not be efficient for the calculation of .