期刊名称:International Journal of Antennas and Propagation
印刷版ISSN:1687-5869
电子版ISSN:1687-5877
出版年度:2014
卷号:2014
DOI:10.1155/2014/959386
出版社:Hindawi Publishing Corporation
摘要:A spatial filtering-based relevance vector machine (RVM) is proposed in this paper to separate coherent sources and estimate their directions-of-arrival (DOA), with the filter parameters and DOA estimates initialized and refined via sparse Bayesian learning. The RVM is used to exploit the spatial sparsity of the incident signals and gain improved adaptability to much demanding scenarios, such as low signal-to-noise ratio (SNR), limited snapshots, and spatially adjacent sources, and the spatial filters are introduced to enhance global convergence of the original RVM in the case of coherent sources. The proposed method adapts to arbitrary array geometry, and simulation results show that it surpasses the existing methods in DOA estimation performance.