首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Direction-of-Arrival Estimation for Coherent Sources via Sparse Bayesian Learning
  • 本地全文:下载
  • 作者:Zhang-Meng Liu ; Zheng Liu ; Dao-Wang Feng
  • 期刊名称:International Journal of Antennas and Propagation
  • 印刷版ISSN:1687-5869
  • 电子版ISSN:1687-5877
  • 出版年度:2014
  • 卷号:2014
  • DOI:10.1155/2014/959386
  • 出版社:Hindawi Publishing Corporation
  • 摘要:A spatial filtering-based relevance vector machine (RVM) is proposed in this paper to separate coherent sources and estimate their directions-of-arrival (DOA), with the filter parameters and DOA estimates initialized and refined via sparse Bayesian learning. The RVM is used to exploit the spatial sparsity of the incident signals and gain improved adaptability to much demanding scenarios, such as low signal-to-noise ratio (SNR), limited snapshots, and spatially adjacent sources, and the spatial filters are introduced to enhance global convergence of the original RVM in the case of coherent sources. The proposed method adapts to arbitrary array geometry, and simulation results show that it surpasses the existing methods in DOA estimation performance.
国家哲学社会科学文献中心版权所有