期刊名称:International Journal of Distributed Sensor Networks
印刷版ISSN:1550-1329
电子版ISSN:1550-1477
出版年度:2014
卷号:2014
DOI:10.1155/2014/438468
出版社:Hindawi Publishing Corporation
摘要:We suggest a method of effectively detecting and classifying network traffic attacks by visualizing their IP (Internet protocol) addresses and ports and clustering the visualized ports based on their variance. The proposed approach first visualizes the IP addresses and ports of the senders and receivers into two-dimensional images. The method then analyzes the visualized images and extracts linear and/or high brightness patterns, which represent traffic attacks. Subsequently, it groups the ports using an improved clustering algorithm, allowing an artificial neural network to learn the extracted features and to automatically detect and classify normal traffic data, DDoS attacks, DoS attacks, or Internet Worms. The experiments conducted in this work prove that our suggested clustering-based algorithm effectively detects various traffic attacks.