首页    期刊浏览 2025年05月12日 星期一
登录注册

文章基本信息

  • 标题:New Highly Efficient Families of Higher-Order Methods for Simple Roots, Permitting <svg xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg" style="vertical-align:-4.60088pt;width:92.712502px;" id="M1" height="29.1625" version="1.1" viewBox="0 0 92.712502 29.1625" width="92.712502"> <g transform="matrix(.022,-0,0,-.022,.062,23.25)"><path id="x1D453" d="M619 670q0 -13 -9 -26t-18 -19q-13 -10 -25 2q-36 38 -66 38q-31 0 -54.5 -50t-45.5 -185h120l-20 -31l-107 -12q-23 -138 -57 -293q-27 -122 -55 -184.5t-75 -109.5q-60 -61 -114 -61q-25 0 -47.5 15t-22.5 31q0 17 31 44q11 8 20 -1q10 -11 31 -19t35 -8q26 0 47 19&#xA;q34 34 71 253l54 315h-90l-3 12l31 30h70q28 138 90 204q35 37 75 57.5t70 20.5q26 0 45 -14t19 -28z"></path></g> <g transform="matrix(.016,-0,0,-.016,14.45,12.488)"><path id="x2032" d="M227 744l-123 -338l-31 15l73 368q12 3 41.5 -8t36.5 -20z"></path></g> <g transform="matrix(.022,-0,0,-.022,19.737,23.25)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z"></path></g><g transform="matrix(.022,-0,0,-.022,27.494,23.25)"><path id="x1D465" d="M536 404q0 -17 -13.5 -31.5t-26.5 -14.5q-8 0 -15 10q-11 14 -25 14q-22 0 -67 -50q-47 -52 -68 -82l37 -102q31 -88 55 -88t78 59l16 -23q-32 -48 -68.5 -78t-65.5 -30q-19 0 -37.5 20t-29.5 53l-41 116q-72 -106 -114.5 -147.5t-79.5 -41.5q-21 0 -34.5 14t-13.5 37&#xA;q0 16 13.5 31.5t28.5 15.5q12 0 17 -11q5 -10 25 -10q22 0 57.5 36t89.5 111l-40 108q-22 58 -36 58q-21 0 -67 -57l-19 20q81 107 125 107q17 0 30 -22t39 -88l22 -55q68 92 108.5 128.5t74.5 36.5q20 0 32.5 -14t12.5 -30z"></path></g> <g transform="matrix(.016,-0,0,-.016,40.025,28.625)"><path id="x1D45B" d="M495 86q-46 -47 -87 -72.5t-63 -25.5q-43 0 -16 107l49 210q7 34 8 50.5t-3 21t-13 4.5q-35 0 -109.5 -72.5t-115.5 -140.5q-21 -75 -38 -159q-50 -10 -76 -21l-6 8l84 340q8 35 -4 35q-17 0 -67 -46l-15 26q44 44 85.5 70.5t64.5 26.5q35 0 10 -103l-24 -98h2&#xA;q42 56 97 103.5t96 71.5q46 26 74 26q9 0 16 -2.5t14 -11.5t9.5 -24.5t-1 -44t-13.5 -68.5q-30 -117 -47 -200q-4 -19 -3.5 -25t6.5 -6q21 0 70 48z"></path></g> <g transform="matrix(.022,-0,0,-.022,48.525,23.25)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z"></path></g><g transform="matrix(.022,-0,0,-.022,62.49,23.25)"><path id="x3D" d="M535 323h-483v50h483v-50zM535 138h-483v50h483v-50z"></path></g><g transform="matrix(.022,-0,0,-.022,81.88,23.25)"><path id="x30" d="M241 635q53 0 94 -28.5t63.5 -76t33.5 -102.5t11 -116q0 -58 -11 -112.5t-34 -103.5t-63.5 -78.5t-94.5 -29.5t-95 28t-64.5 75t-34.5 102.5t-11 118.5q0 58 11.5 112.5t34.5 103t64.5 78t95.5 29.5zM238 602q-32 0 -55.5 -25t-35.5 -68t-17.5 -91t-5.5 -105&#xA;q0 -76 10 -138.5t37 -107.5t69 -45q32 0 55.5 25t35.5 68.5t17.5 91.5t5.5 105t-5.5 105.5t-18 92t-36 68t-56.5 24.5z"></path></g> </svg>
  • 本地全文:下载
  • 作者:Ramandeep Behl ; V. Kanwar
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:2014
  • 卷号:2014
  • DOI:10.1155/2014/264529
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Construction of higher-order optimal and globally convergent methods for computing simple roots of nonlinear equations is an earliest and challenging problem in numerical analysis. Therefore, the aim of this paper is to present optimal and globally convergent families of King's method and Ostrowski's method having biquadratic and eight-order convergence, respectively, permitting in the vicinity of the required root. Fourth-order King's family and Ostrowski's method can be seen as special cases of our proposed scheme. All the methods considered here are found to be more effective to the similar robust methods available in the literature. In their dynamical study, it has been observed that the proposed methods have equal or better stability and robustness as compared to the other methods.
国家哲学社会科学文献中心版权所有