首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Hypersurfaces with Two Distinct Para-Blaschke Eigenvalues in <svg xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg" style="vertical-align:-3.186pt;width:62.400002px;" id="M1" height="24.6625" version="1.1" viewBox="0 0 62.400002 24.6625" width="62.400002"> <g transform="matrix(.022,-0,0,-.022,.062,20.788)"><path id="x1D446" d="M457 488l-30 -3q-17 148 -131 148q-53 0 -84.5 -34.5t-31.5 -82.5q0 -42 25.5 -72t74.5 -62l33 -22q63 -42 95 -85t32 -102q0 -84 -67 -137t-163 -53q-58 0 -113 22t-70 43l-4 152l27 4q4 -32 15 -62.5t31 -59.5t53.5 -47t76.5 -18q56 0 92 35t36 96q0 39 -25 70t-78 68&#xA;l-31 22q-32 23 -53.5 41.5t-45 57t-23.5 77.5q0 82 58 132.5t156 50.5q46 0 101 -17l18.5 -6t17 -6t8.5 -3q-4 -55 0 -147z"></path></g> <g transform="matrix(.016,-0,0,-.016,10.825,10.025)"><path id="x1D45B" d="M495 86q-46 -47 -87 -72.5t-63 -25.5q-43 0 -16 107l49 210q7 34 8 50.5t-3 21t-13 4.5q-35 0 -109.5 -72.5t-115.5 -140.5q-21 -75 -38 -159q-50 -10 -76 -21l-6 8l84 340q8 35 -4 35q-17 0 -67 -46l-15 26q44 44 85.5 70.5t64.5 26.5q35 0 10 -103l-24 -98h2&#xA;q42 56 97 103.5t96 71.5q46 26 74 26q9 0 16 -2.5t14 -11.5t9.5 -24.5t-1 -44t-13.5 -68.5q-30 -117 -47 -200q-4 -19 -3.5 -25t6.5 -6q21 0 70 48z"></path></g><g transform="matrix(.016,-0,0,-.016,18.702,10.025)"><path id="x2B" d="M535 230h-212v-233h-58v233h-213v50h213v210h58v-210h212v-50z"></path></g><g transform="matrix(.016,-0,0,-.016,27.913,10.025)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z"></path></g> <g transform="matrix(.022,-0,0,-.022,36.062,20.788)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z"></path></g><g transform="matrix(.022,-0,0,-.022,43.819,20.788)"><use xlink:href="#x31"></use></g><g transform="matrix(.022,-0,0,-.022,54.578,20.788)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z"></path></g> </svg>
  • 本地全文:下载
  • 作者:Junfeng Chen ; Shichang Shu
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:2014
  • 卷号:2014
  • DOI:10.1155/2014/398746
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Let be an -dimensional immersed hypersurface without umbilical points and with vanishing Möbius form in a unit sphere , and let and be the Blaschke tensor and the Möbius second fundamental form of , respectively. We define a symmetric tensor which is called the para-Blaschke tensor of , where is a constant. An eigenvalue of the para-Blaschke tensor is called a para-Blaschke eigenvalue of . The aim of this paper is to classify the oriented hypersurfaces in with two distinct para-Blaschke eigenvalues under some rigidity conditions.
国家哲学社会科学文献中心版权所有