期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2014
卷号:111
期号:23
页码:8607-8612
DOI:10.1073/pnas.1407379111
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Use of the highly toxic and easily prepared rodenticide tetramethylenedisulfotetramine (TETS) was banned after thousands of accidental or intentional human poisonings, but it is of continued concern as a chemical threat agent. TETS is a noncompetitive blocker of the GABA type A receptor (GABAAR), but its molecular interaction has not been directly established for lack of a suitable radioligand to localize the binding site. We synthesized [14C]TETS (14 mCi/mmol, radiochemical purity >99%) by reacting sulfamide with H14CHO and s-trioxane then completion of the sequential cyclization with excess HCHO. The outstanding radiocarbon sensitivity of accelerator mass spectrometry (AMS) allowed the use of [14C]TETS in neuroreceptor binding studies with rat brain membranes in comparison with the standard GABAAR radioligand 4'-ethynyl-4-n-[3H]propylbicycloorthobenzoate ([3H]EBOB) (46 Ci/mmol), illustrating the use of AMS for characterizing the binding sites of high-affinity 14C radioligands. Fourteen noncompetitive antagonists of widely diverse chemotypes assayed at 1 or 10 {micro}M inhibited [14C]TETS and [3H]EBOB binding to a similar extent (r2 = 0.71). Molecular dynamics simulations of these 14 toxicants in the pore region of the 1{beta}2{gamma}2 GABAAR predict unique and significant polar interactions for TETS with 1T1' and {gamma}2S2', which are not observed for EBOB or the GABAergic insecticides. Several GABAAR modulators similarly inhibited [14C]TETS and [3H]EBOB binding, including midazolam, flurazepam, avermectin Ba1, baclofen, isoguvacine, and propofol, at 1 or 10 M, providing an in vitro system for recognizing candidate antidotes.